Перевод: с английского на все языки

со всех языков на английский

patent position

  • 1 patent position

    PATENT TERMS ТНТ №006
    патентная ситуация (правовая и коммерческая ситуация, возникшая в данной области техники после выдачи одного или группы патентов)

    New terms dictionary > patent position

  • 2 patent position

    Патенты: патентная ситуация, патентная ситуация (правовая и коммерческая ситуация, возникшая в данной области техники после выдачи одного или группы патентов)

    Универсальный англо-русский словарь > patent position

  • 3 patent position

    патентная ситуация (правовая и коммерческая ситуация, возникшая в данной области техники после выдачи одного или группы патентов)
    * * *
    патентная ситуация (правовая и коммерческая ситуация, возникшая в данной области техники после выдачи одного или группы патентов)

    Patent terms dictionary > patent position

  • 4 patent situation

    PATENT TERMS ТНТ №006

    New terms dictionary > patent situation

  • 5 position

    Patent terms dictionary > position

  • 6 patent situation

    Patent terms dictionary > patent situation

  • 7 position

    n (ЛДП)
    1) положение
    2) должность
    assign to a position назначить на какую-л. должность;
    posting the position 1. объявление об открывшейся / имеющейся вакансии 2. объявление о приеме на работу на определенную должность
    3) координата
    axial position координата, отсчитываемая по оси элемента
    4) отношение к чему-л.
    have no position respecting А не иметь никакого касательства к A;
    take no position устраняться от чего-л.;
    The ASTM
    takes no position respecting the validity of any patent rights ASTM занимает абсолютно нейтральную позицию в отношении действительности / состоятельности каких бы то ни было патентных прав
    v
    1) устанавливать
    2) переводить (напр., переключатель, рычаг, рукоятку и т.д. в требуемое положение)
    3) находиться

    English-Russian dictionary of scientific and technical difficulties vocabulary > position

  • 8 Lister, Samuel Cunliffe, 1st Baron Masham

    SUBJECT AREA: Textiles
    [br]
    b. 1 January 1815 Calverly Hall, Bradford, England
    d. 2 February 1906 Swinton Park, near Bradford, England
    [br]
    English inventor of successful wool-combing and waste-silk spinning machines.
    [br]
    Lister was descended from one of the old Yorkshire families, the Cunliffe Listers of Manningham, and was the fourth son of his father Ellis. After attending a school on Clapham Common, Lister would not go to university; his family hoped he would enter the Church, but instead he started work with the Liverpool merchants Sands, Turner \& Co., who frequently sent him to America. In 1837 his father built for him and his brother a worsted mill at Manningham, where Samuel invented a swivel shuttle and a machine for making fringes on shawls. It was here that he first became aware of the unhealthy occupation of combing wool by hand. Four years later, after seeing the machine that G.E. Donisthorpe was trying to work out, he turned his attention to mechanizing wool-combing. Lister took Donisthorpe into partnership after paying him £12,000 for his patent, and developed the Lister-Cartwright "square nip" comber. Until this time, combing machines were little different from Cartwright's original, but Lister was able to improve on this with continuous operation and by 1843 was combing the first fine botany wool that had ever been combed by machinery. In the following year he received an order for fifty machines to comb all qualities of wool. Further combing patents were taken out with Donisthorpe in 1849, 1850, 1851 and 1852, the last two being in Lister's name only. One of the important features of these patents was the provision of a gripping device or "nip" which held the wool fibres at one end while the rest of the tuft was being combed. Lister was soon running nine combing mills. In the 1850s Lister had become involved in disputes with others who held combing patents, such as his associate Isaac Holden and the Frenchman Josué Heilmann. Lister bought up the Heilmann machine patents and afterwards other types until he obtained a complete monopoly of combing machines before the patents expired. His invention stimulated demand for wool by cheapening the product and gave a vital boost to the Australian wool trade. By 1856 he was at the head of a wool-combing business such as had never been seen before, with mills at Manningham, Bradford, Halifax, Keighley and other places in the West Riding, as well as abroad.
    His inventive genius also extended to other fields. In 1848 he patented automatic compressed air brakes for railways, and in 1853 alone he took out twelve patents for various textile machines. He then tried to spin waste silk and made a second commercial career, turning what was called "chassum" and hitherto regarded as refuse into beautiful velvets, silks, plush and other fine materials. Waste silk consisted of cocoon remnants from the reeling process, damaged cocoons and fibres rejected from other processes. There was also wild silk obtained from uncultivated worms. This is what Lister saw in a London warehouse as a mass of knotty, dirty, impure stuff, full of bits of stick and dead mulberry leaves, which he bought for a halfpenny a pound. He spent ten years trying to solve the problems, but after a loss of £250,000 and desertion by his partner his machine caught on in 1865 and brought Lister another fortune. Having failed to comb this waste silk, Lister turned his attention to the idea of "dressing" it and separating the qualities automatically. He patented a machine in 1877 that gave a graduated combing. To weave his new silk, he imported from Spain to Bradford, together with its inventor Jose Reixach, a velvet loom that was still giving trouble. It wove two fabrics face to face, but the problem lay in separating the layers so that the pile remained regular in length. Eventually Lister was inspired by watching a scissors grinder in the street to use small emery wheels to sharpen the cutters that divided the layers of fabric. Lister took out several patents for this loom in his own name in 1868 and 1869, while in 1871 he took out one jointly with Reixach. It is said that he spent £29,000 over an eleven-year period on this loom, but this was more than recouped from the sale of reasonably priced high-quality velvets and plushes once success was achieved. Manningham mills were greatly enlarged to accommodate this new manufacture.
    In later years Lister had an annual profit from his mills of £250,000, much of which was presented to Bradford city in gifts such as Lister Park, the original home of the Listers. He was connected with the Bradford Chamber of Commerce for many years and held the position of President of the Fair Trade League for some time. In 1887 he became High Sheriff of Yorkshire, and in 1891 he was made 1st Baron Masham. He was also Deputy Lieutenant in North and West Riding.
    [br]
    Principal Honours and Distinctions
    Created 1st Baron Masham 1891.
    Bibliography
    1849, with G.E.Donisthorpe, British patent no. 12,712. 1850, with G.E. Donisthorpe, British patent no. 13,009. 1851, British patent no. 13,532.
    1852, British patent no. 14,135.
    1877, British patent no. 3,600 (combing machine). 1868, British patent no. 470.
    1868, British patent no. 2,386.
    1868, British patent no. 2,429.
    1868, British patent no. 3,669.
    1868, British patent no. 1,549.
    1871, with J.Reixach, British patent no. 1,117. 1905, Lord Masham's Inventions (autobiography).
    Further Reading
    J.Hogg (ed.), c. 1888, Fortunes Made in Business, London (biography).
    W.English, 1969, The Textile Industry, London; and C.Singer (ed.), 1958, A History of Technology, Vol. IV, Oxford: Clarendon Press (both cover the technical details of Lister's invention).
    RLH

    Biographical history of technology > Lister, Samuel Cunliffe, 1st Baron Masham

  • 9 Bain, Alexander

    [br]
    b. October 1810 Watten, Scotland
    d. 2 January 1877 Kirkintilloch, Scotland
    [br]
    Scottish inventor and entrepreneur who laid the foundations of electrical horology and designed an electromagnetic means of transmitting images (facsimile).
    [br]
    Alexander Bain was born into a crofting family in a remote part of Scotland. He was apprenticed to a watchmaker in Wick and during that time he was strongly influenced by a lecture on "Heat, sound and electricity" that he heard in nearby Thurso. This lecture induced him to take up a position in Clerkenwell in London, working as a journeyman clockmaker, where he was able to further his knowledge of electricity by attending lectures at the Adelaide Gallery and the Polytechnic Institution. His thoughts naturally turned to the application of electricity to clockmaking, and despite a bitter dispute with Charles Wheatstone over priority he was granted the first British patent for an electric clock. This patent, taken out on 11 January 1841, described a mechanism for an electric clock, in which an oscillating component of the clock operated a mechanical switch that initiated an electromagnetic pulse to maintain the regular, periodic motion. This principle was used in his master clock, produced in 1845. On 12 December of the same year, he patented a means of using electricity to control the operation of steam railway engines via a steam-valve. His earliest patent was particularly far-sighted and anticipated most of the developments in electrical horology that occurred during the nineteenth century. He proposed the use of electricity not only to drive clocks but also to distribute time over a distance by correcting the hands of mechanical clocks, synchronizing pendulums and using slave dials (here he was anticipated by Steinheil). However, he was less successful in putting these ideas into practice, and his electric clocks proved to be unreliable. Early electric clocks had two weaknesses: the battery; and the switching mechanism that fed the current to the electromagnets. Bain's earth battery, patented in 1843, overcame the first defect by providing a reasonably constant current to drive his clocks, but unlike Hipp he failed to produce a reliable switch.
    The application of Bain's numerous patents for electric telegraphy was more successful, and he derived most of his income from these. They included a patent of 12 December 1843 for a form of fax machine, a chemical telegraph that could be used for the transmission of text and of images (facsimile). At the receiver, signals were passed through a moving band of paper impregnated with a solution of ammonium nitrate and potassium ferrocyanide. For text, Morse code signals were used, and because the system could respond to signals faster than those generated by hand, perforated paper tape was used to transmit the messages; in a trial between Paris and Lille, 282 words were transmitted in less than one minute. In 1865 the Abbé Caselli, a French engineer, introduced a commercial fax service between Paris and Lyons, based on Bain's device. Bain also used the idea of perforated tape to operate musical wind instruments automatically. Bain squandered a great deal of money on litigation, initially with Wheatstone and then with Morse in the USA. Although his inventions were acknowledged, Bain appears to have received no honours, but when towards the end of his life he fell upon hard times, influential persons in 1873 secured for him a Civil List Pension of £80 per annum and the Royal Society gave him £150.
    [br]
    Bibliography
    1841, British patent no. 8,783; 1843, British patent no. 9,745; 1845, British patent no.
    10,838; 1847, British patent no. 11,584; 1852, British patent no. 14,146 (all for electric clocks).
    1852, A Short History of the Electric Clocks with Explanation of Their Principles and
    Mechanism and Instruction for Their Management and Regulation, London; reprinted 1973, introd. W.Hackmann, London: Turner \& Devereux (as the title implies, this pamphlet was probably intended for the purchasers of his clocks).
    Further Reading
    The best account of Bain's life and work is in papers by C.A.Aked in Antiquarian Horology: "Electricity, magnetism and clocks" (1971) 7: 398–415; "Alexander Bain, the father of electrical horology" (1974) 9:51–63; "An early electric turret clock" (1975) 7:428–42. These papers were reprinted together (1976) in A Conspectus of Electrical Timekeeping, Monograph No. 12, Antiquarian Horological Society: Tilehurst.
    J.Finlaison, 1834, An Account of Some Remarkable Applications of the Electric Fluid to the Useful Arts by Alexander Bain, London (a contemporary account between Wheatstone and Bain over the invention of the electric clock).
    J.Munro, 1891, Heroes of the Telegraph, Religious Tract Society.
    J.Malster \& M.J.Bowden, 1976, "Facsimile. A Review", Radio \&Electronic Engineer 46:55.
    D.J.Weaver, 1982, Electrical Clocks and Watches, Newnes.
    T.Hunkin, 1993, "Just give me the fax", New Scientist (13 February):33–7 (provides details of Bain's and later fax devices).
    DV / KF

    Biographical history of technology > Bain, Alexander

  • 10 Townsend, Matthew

    SUBJECT AREA: Textiles
    [br]
    b. Leicester (?), England
    d. after 1867 USA
    [br]
    English inventor of the latch needle for making seamless hose, and developer of ribbed knitting on circular machines.
    [br]
    Townsend, who described himself in his first patent as a framework knitter and afterwards as a hosier of Leicester, took out a patent in 1847 for the application of a "machine like that of a point net frame to an ordinary stocking-frame". He described needles and hooks of a peculiar shape which were able to take the work off the knitting machine, reverse the loops and return them again so that ribbed knitting could be made on circular machines. These became popular for knitting stockings which, although not fully fashioned, had sufficient strength to fit the leg. In 1854 he took out a patent for making round hose with heels and toes fashioned on other machines. In yet another patent, in 1856, he described a method of raising looped pile on knitted fabrics for making "terry" towelling fabrics. He could use different coloured yarns in the fabric that were controlled by a Jacquard mechanism. It was in the same year, 1856, in a further patent that he described his tumbler or latch needles as well as the making of figured patterns in knitting on both sides of the fabric with a Jacquard mechanism. The latch needles were self-acting, being made to move up and down or backwards and forwards by the action of cams set in the cylindrical body of the machine. Normally the needle worked in a vertical or inclined position with the previous loop on the shank below the latch. Weft yarn was placed in the hook of the needle. The needle was drawn down between fixed plates which formed a new loop with the weft. At the same time, the original loop already on the shank of the needle moved along the shank and closed the latch so that it could pass over the newly formed loop in the needle hook and fall over the end of the needle incorporating the new loop on its way to make the next row of stitches. The latch needle obviated the need for loop wheels and pressers and thus simplified the knitting mechanism. Townsend's invention was the forerunner of an entirely new generation of knitting machines, but it was many years before its full potential was realized, the bearded needle of William Lee being preferred because the hinge of the latch could not be made as fine as the bearded needle.
    Townsend was in the first rank of skilful manufacturers of fancy Leicester hosiery and had a good practical knowledge of the machinery used in his trade. Having patented his needles, he seems not to have succeeded in getting them into very profitable or extensive use, possibly because he fixed the royalty too high. His invention proved to be most useful and profitable in the hands of others, for it gave great impetus to the trade in seamless hose. For various reasons he discontinued his business in Leicester. He emigrated to the USA, where, after some initial setbacks, he began to reap the rewards of his skill.
    [br]
    Bibliography
    1847, British patent no. 11,899 (knitting machine). 1854, British patent no. 1,523 (seamless hose).
    1856, British patent no. 1,157 ("terry" towelling fabrics).
    1856, British patent no. 1,858 (latch needles and double-sided patterns on fabrics).
    Further Reading
    F.A.Wells, 1935, The British Hosiery and Knitwear Industry, London (mentions Townsend briefly).
    W.Felkin, 1967, History of the Machine-wrought Hosiery and Lace Manufactures, reprint, Newton Abbot (orig. pub. 1867) (a better account of Townsend).
    RLH

    Biographical history of technology > Townsend, Matthew

  • 11 application

    n
    1) заявка; заявление
    3) применение; использование; назначение (прибора и т.п.)

    - additional application
    - advance application
    - business application
    - cognate application
    - commercial application
    - companion application
    - complete application
    - convention application
    - copending applications
    - design application
    - divisional application
    - efficient application
    - evaluated application
    - export application
    - extensive application
    - fast-track application
    - fertilizer application
    - field application
    - first application
    - import application
    - incoming applications
    - independent application
    - industrial application
    - insurance application
    - interfering application
    - joint application
    - junior application
    - legal application
    - licence application
    - limited application
    - loan application
    - missing application
    - multiple application
    - objectionable patent application
    - on-the-job application
    - original application
    - parent application
    - patent application
    - peaceful application
    - pending application
    - potential application
    - practical application
    - preliminary application
    - previous application
    - prior application
    - provisional application
    - reciprocity application
    - related application
    - renewal application
    - representative application
    - restricted application
    - senior application
    - single application
    - specific application
    - territorial application
    - uniform application of tax laws
    - valid application
    - vicious patent application
    - visa application
    - wide application
    - application for admission
    - application for allotment of shares
    - application for compensation
    - application for credit
    - application for exhibition space
    - application for expertise
    - application for exportation
    - application for grant
    - application for grant of a patent
    - application for an import permit
    - application for invention rights
    - application for a job
    - application for leave
    - application for a licence
    - application for listing
    - application for participation
    - application for a patent
    - application for payment
    - application for a permit
    - application for a position
    - application for postponement
    - application for quotation
    - application for registration
    - application for reissue of a patent
    - application for respite
    - application for review
    - application for space
    - application for stand reservation
    - application for a vacancy
    - application for a visa
    - application of automation
    - application of experience
    - application of expertise
    - application of funds
    - application of a licence
    - application of new technologies
    - application of provisions
    - application of a sanction
    - application to arbitration
    - upon application
    - prices on application
    - accept an application
    - consider an application
    - disclaim an application
    - draw up an application
    - effect an application
    - examine an application
    - execute an application
    - file an application
    - fill in an application
    - fill in an application for an issue of shares
    - find application
    - grant an application
    - interfere with an application
    - invite applications for shares
    - lodge an application
    - make an application
    - prepare an application
    - process a patent application
    - refuse an application
    - reject an application
    - renew an application
    - submit an application
    - uphold an application
    - withdraw an application

    English-russian dctionary of contemporary Economics > application

  • 12 Whitney, Eli

    [br]
    b. 8 December 1765 Westborough, Massachusetts, USA
    d. 8 January 1825 New Haven, Connecticut, USA
    [br]
    American inventor of the cotton gin and manufacturer of firearms.
    [br]
    The son of a prosperous farmer, Eli Whitney as a teenager showed more interest in mechanics than school work. At the age of 15 he began an enterprise business manufacturing nails in his father's workshop, even having to hire help to fulfil his orders. He later determined to acquire a university education and, his father having declined to provide funds, he taught at local schools to obtain the means to attend Leicester Academy, Massachusetts, in preparation for his entry to Yale in 1789. He graduated in 1792 and then decided to study law. He accepted a position in Georgia as a tutor that would have given him time for study; this post did not materialize, but on his journey south he met General Nathanael Greene's widow and the manager of her plantations, Phineas Miller (1764–1803). A feature of agriculture in the southern states was that the land was unsuitable for long-staple cotton but could yield large crops of green-seed cotton. Green-seed cotton was difficult to separate from its seed, and when Whitney learned of the problem in 1793 he quickly devised a machine known as the cotton gin, which provided an effective solution. He formed a partnership with Miller to manufacture the gin and in 1794 obtained a patent. This invention made possible the extraordinary growth of the cotton industry in the United States, but the patent was widely infringed and it was not until 1807, after amendment of the patent laws, that Whitney was able to obtain a favourable decision in the courts and some financial return.
    In 1798 Whitney was in financial difficulties following the failure of the initial legal action against infringement of the cotton gin patent, but in that year he obtained a government contract to supply 10,000 muskets within two years with generous advance payments. He built a factory at New Haven, Connecticut, and proposed to use a new method of manufacture, perhaps the first application of the system of interchangeable parts. He failed to supply the firearms in the specified time, and in fact the first 500 guns were not delivered until 1801 and the full contract was not completed until 1809.
    In 1812 Whitney made application for a renewal of his cotton gin patent, but this was refused. In the same year, however, he obtained a second contract from the Government for 15,000 firearms and a similar one from New York State which ensured the success of his business.
    [br]
    Further Reading
    J.Mirsky and A.Nevins, 1952, The World of Eli Whitney, New York (a good biography). P.J.Federico, 1960, "Records of Eli Whitney's cotton gin patent", Technology and Culture 1: 168–76 (for details of the cotton gin patent).
    R.S.Woodbury, 1960, The legend of Eli Whitney and interchangeable parts', Technology and Culture 1:235–53 (challenges the traditional view of Eli Whitney as the sole originator of the "American" system of manufacture).
    See also Technology and Culture 14(1973):592–8; 18(1977):146–8; 19(1978):609–11.
    RTS

    Biographical history of technology > Whitney, Eli

  • 13 De Forest, Lee

    [br]
    b. 26 August 1873 Council Bluffs, Iowa, USA
    d. 30 June 1961 Hollywood, California, USA
    [br]
    American electrical engineer and inventor principally known for his invention of the Audion, or triode, vacuum tube; also a pioneer of sound in the cinema.
    [br]
    De Forest was born into the family of a Congregational minister that moved to Alabama in 1879 when the father became President of a college for African-Americans; this was a position that led to the family's social ostracism by the white community. By the time he was 13 years old, De Forest was already a keen mechanical inventor, and in 1893, rejecting his father's plan for him to become a clergyman, he entered the Sheffield Scientific School of Yale University. Following his first degree, he went on to study the propagation of electromagnetic waves, gaining a PhD in physics in 1899 for his thesis on the "Reflection of Hertzian Waves from the Ends of Parallel Wires", probably the first US thesis in the field of radio.
    He then joined the Western Electric Company in Chicago where he helped develop the infant technology of wireless, working his way up from a modest post in the production area to a position in the experimental laboratory. There, working alone after normal working hours, he developed a detector of electromagnetic waves based on an electrolytic device similar to that already invented by Fleming in England. Recognizing his talents, a number of financial backers enabled him to set up his own business in 1902 under the name of De Forest Wireless Telegraphy Company; he was soon demonstrating wireless telegraphy to interested parties and entering into competition with the American Marconi Company.
    Despite the failure of this company because of fraud by his partners, he continued his experiments; in 1907, by adding a third electrode, a wire mesh, between the anode and cathode of the thermionic diode invented by Fleming in 1904, he was able to produce the amplifying device now known as the triode valve and achieve a sensitivity of radio-signal reception much greater than possible with the passive carborundum and electrolytic detectors hitherto available. Patented under the name Audion, this new vacuum device was soon successfully used for experimental broadcasts of music and speech in New York and Paris. The invention of the Audion has been described as the beginning of the electronic era. Although much development work was required before its full potential was realized, the Audion opened the way to progress in all areas of sound transmission, recording and reproduction. The patent was challenged by Fleming and it was not until 1943 that De Forest's claim was finally recognized.
    Overcoming the near failure of his new company, the De Forest Radio Telephone Company, as well as unsuccessful charges of fraudulent promotion of the Audion, he continued to exploit the potential of his invention. By 1912 he had used transformer-coupling of several Audion stages to achieve high gain at radio frequencies, making long-distance communication a practical proposition, and had applied positive feedback from the Audion output anode to its input grid to realize a stable transmitter oscillator and modulator. These successes led to prolonged patent litigation with Edwin Armstrong and others, and he eventually sold the manufacturing rights, in retrospect often for a pittance.
    During the early 1920s De Forest began a fruitful association with T.W.Case, who for around ten years had been working to perfect a moving-picture sound system. De Forest claimed to have had an interest in sound films as early as 1900, and Case now began to supply him with photoelectric cells and primitive sound cameras. He eventually devised a variable-density sound-on-film system utilizing a glow-discharge modulator, the Photion. By 1926 De Forest's Phonofilm had been successfully demonstrated in over fifty theatres and this system became the basis of Movietone. Though his ideas were on the right lines, the technology was insufficiently developed and it was left to others to produce a system acceptable to the film industry. However, De Forest had played a key role in transforming the nature of the film industry; within a space of five years the production of silent films had all but ceased.
    In the following decade De Forest applied the Audion to the development of medical diathermy. Finally, after spending most of his working life as an independent inventor and entrepreneur, he worked for a time during the Second World War at the Bell Telephone Laboratories on military applications of electronics.
    [br]
    Principal Honours and Distinctions
    Institute of Electronic and Radio Engineers Medal of Honour 1922. President, Institute of Electronic and Radio Engineers 1930. Institute of Electrical and Electronics Engineers Edison Medal 1946.
    Bibliography
    1904, "Electrolytic detectors", Electrician 54:94 (describes the electrolytic detector). 1907, US patent no. 841,387 (the Audion).
    1950, Father of Radio, Chicago: WIlcox \& Follett (autobiography).
    De Forest gave his own account of the development of his sound-on-film system in a series of articles: 1923. "The Phonofilm", Transactions of the Society of Motion Picture Engineers 16 (May): 61–75; 1924. "Phonofilm progress", Transactions of the Society of Motion Picture Engineers 20:17–19; 1927, "Recent developments in the Phonofilm", Transactions of the Society of Motion Picture Engineers 27:64–76; 1941, "Pioneering in talking pictures", Journal of the Society of Motion Picture Engineers 36 (January): 41–9.
    Further Reading
    G.Carneal, 1930, A Conqueror of Space (biography).
    I.Levine, 1964, Electronics Pioneer, Lee De Forest (biography).
    E.I.Sponable, 1947, "Historical development of sound films", Journal of the Society of Motion Picture Engineers 48 (April): 275–303 (an authoritative account of De Forest's sound-film work, by Case's assistant).
    W.R.McLaurin, 1949, Invention and Innovation in the Radio Industry.
    C.F.Booth, 1955, "Fleming and De Forest. An appreciation", in Thermionic Valves 1904– 1954, IEE.
    V.J.Phillips, 1980, Early Radio Detectors, London: Peter Peregrinus.
    KF / JW

    Biographical history of technology > De Forest, Lee

  • 14 Johnson, Eldridge Reeves

    SUBJECT AREA: Recording
    [br]
    b. 18 February 1867 Wilmington, Delaware, USA
    d. 14 November 1945 Moorestown, New Jersey, USA
    [br]
    American industrialist, founder and owner of the Victor Talking Machine Company; developer of many basic constructions in mechanical sound recording and the reproduction and manufacture of gramophone records.
    [br]
    He graduated from the Dover Academy (Delaware) in 1882 and was apprenticed in a machine-repair firm in Philadelphia and studied in evening classes at the Spring Garden Institute. In 1888 he took employment in a small Philadelphia machine shop owned by Andrew Scull, specializing in repair and bookbinding machinery. After travels in the western part of the US, in 1891 he became a partner in Scull \& Johnson, Manufacturing Machinists, and established a further company, the New Jersey Wire Stitching Machine Company. He bought out Andrew Scull's interest in October 1894 (the last instalment being paid in 1897) and became an independent general machinist. In 1896 he had perfected a spring motor for the Berliner flat-disc gramophone, and he started experimenting with a more direct method of recording in a spiral groove: that of cutting in wax. Co-operation with Berliner eventually led to the incorporation of the Victor Talking Machine Company in 1901. The innumerable court cases stemming from the fact that so many patents for various elements in sound recording and reproduction were in very many hands were brought to an end in 1903 when Johnson was material in establishing cross-licencing agreements between Victor, Columbia Graphophone and Edison to create what is known as a patent pool. Early on, Johnson had a thorough experience in all matters concerning the development and manufacture of both gramophones and records. He made and patented many major contributions in all these fields, and his approach was very business-like in that the contribution to cost of each part or process was always a decisive factor in his designs. This attitude was material in his consulting work for the sister company, the Gramophone Company, in London before it set up its own factories in 1910. He had quickly learned the advantages of advertising and of providing customers with durable equipment and records. This motivation was so strong that Johnson set up a research programme for determining the cause of wear in records. It turned out to depend on groove profile, and from 1911 one particular profile was adhered to and processes for transforming the grooves of valuable earlier records were developed. Without precise measuring instruments, he used the durability as the determining factor. Johnson withdrew more and more to the role of manager, and the Victor Talking Machine Company gained such a position in the market that the US anti-trust legislation was used against it. However, a generation change in the Board of Directors and certain erroneous decisions as to product line started a decline, and in February 1926 Johnson withdrew on extended sick leave: these changes led to the eventual sale of Victor. However, Victor survived due to the advent of radio and the electrification of replay equipment and became a part of Radio Corporation of America. In retirement Johnson took up various activities in the arts and sciences and financially supported several projects; his private yacht was used in 1933 in work with the Smithsonian Institution on a deep-sea hydrographie and fauna-collecting expedition near Puerto Rico.
    [br]
    Bibliography
    Johnson's patents were many, and some were fundamental to the development of the gramophone, such as: US patent no. 650,843 (in particular a recording lathe); US patent nos. 655,556, 655,556 and 679,896 (soundboxes); US patent no. 681,918 (making the original conductive for electroplating); US patent no. 739,318 (shellac record with paper label).
    Further Reading
    Mrs E.R.Johnson, 1913, "Eldridge Reeves Johnson (1867–1945): Industrial pioneer", manuscript (an account of his early experience).
    E.Hutto, Jr, "Emile Berliner, Eldridge Johnson, and the Victor Talking Machine Company", Journal of AES 25(10/11):666–73 (a good but brief account based on company information).
    E.R.Fenimore Johnson, 1974, His Master's Voice was Eldridge R.Johnson, Milford, Del.
    (a very personal biography by his only son).
    GB-N

    Biographical history of technology > Johnson, Eldridge Reeves

  • 15 Robert, Nicolas Louis

    SUBJECT AREA: Paper and printing
    [br]
    b. 2 December 1761 Paris, France
    d. 8 August 1828 Dreux, France
    [br]
    French inventor of the papermaking machine.
    [br]
    Robert was born into a prosperous family and received a fair education, after which he became a lawyer's clerk. In 1780, however, he enlisted in the Army and joined the artillery, serving with distinction in the West Indies, where he fought against the English. When dissatisfied with his prospects, Robert returned to Paris and obtained a post as proof-reader to the firm of printers and publishers owned by the Didot family. They were so impressed with his abilities that they promoted him, c. 1790, to "clerk inspector of workmen" at their paper mill at Essonnes, south of Paris, under the control of Didot St Leger.
    It was there that Robert conceived the idea of a continuous papermaking machine. In 1797 he made a model of it and, after further models, he obtained a patent in 1798. The paper was formed on a continuously revolving wire gauze, from which the sheets were lifted off and hung up to dry. Didot was at first scathing, but he came round to encouraging Robert to make a success of the machine. However, they quarrelled over the financial arrangements and Robert left to try setting up his own mill near Rouen. He failed for lack of capital, and in 1800 he returned to Essonnes and sold his patent to Didot for part cash, part proceeds from the operation of the mill. Didot left for England to enlist capital and technical skills to exploit the invention, while Robert was left in charge at Essonnes. It was the Fourdrinier brothers and Bryan Donkin who developed the papermaking machine into a form in which it could succeed. Meanwhile the mill at Essonnes under Robert's direction had begun to falter and declined to the point where it had to be sold. He had never received the full return from the sale of his patent, but he managed to recover his rights in it. This profited him little, for Didot obtained a patent in France for the Fourdrinier machine and had two examples erected in 1814 and the following year, respectively, neatly side-tracking Robert, who was now without funds or position. To support himself and his family, Robert set up a primary school in Dreux and there passed his remaining years. Although it was the Fourdrinier papermaking machine that was generally adopted, it is Robert who deserves credit for the original initiative.
    [br]
    Further Reading
    R.H.Clapperton, 1967, The Papermaking Machine, Oxford: Pergamon Press, pp. 279–83 (provides a full description of Robert's invention and patent, together with a biography).
    LRD

    Biographical history of technology > Robert, Nicolas Louis

  • 16 Sholes, Christopher Latham

    SUBJECT AREA: Paper and printing
    [br]
    b. 14 February 1819 Mooresburg, Pennsylvania, USA
    d. 17 February 1890 USA
    [br]
    American inventor of the first commercially successful typewriter.
    [br]
    Sholes was born on his parents' farm, of a family that had originally come from England. After leaving school at 14, he was apprenticed for four years to the local newspaper, the Danville Intelligencer. He moved with his parents to Wisconsin, where he followed his trade as journalist and printer, within a year becoming State Printer and taking charge of the House journal of the State Legislature. When he was 20 he left home and joined his brother in Madison, Wisconsin, on the staff of the Wisconsin Enquirer. After marrying, he took the editorship of the Southport Telegraph, until he became Postmaster of Southport. His experiences as journalist and postmaster drew him into politics and, in spite of the delicate nature of his health and personality, he served with credit as State Senator and in the State Assembly. In 1860 he moved to Milwaukee, where he became Editor of the local paper until President Lincoln offered him the post of Collector of Customs at Milwaukee.
    That position at last gave Sholes time to develop his undoubted inventive talents. With a machinist friend, Samuel W.Soule, he obtained a patent for a paging machine and another two years later for a machine for numbering the blank pages of a book serially. At the small machine shop where they worked, there was a third inventor, Carlos Glidden. It was Glidden who suggested to Sholes that, in view of his numbering machine, he would be well equipped to develop a letter printing machine. Glidden drew Sholes's attention to an account of a writing machine that had recently been invented in London by John Pratt, and Sholes was so seized with the idea that he devoted the rest of his life to perfecting the machine. With Glidden and Soule, he took out a patent for a typewriter on June 1868 followed by two further patents for improvements. Sholes struggled unsuccessfully for five years to exploit his invention; his two partners gave up their rights in it and finally, on 1 March 1873, Sholes himself sold his rights to the Remington Arms Company for $12,000. With their mechanical skills and equipment, Remingtons were able to perfect the Sholes typewriter and put it on the market. This, the first commercially successful typewriter, led to a revolution not only in office work, but also in work for women, although progress was slow at first. When the New York Young Women's Christian Association bought six Remingtons in 1881 to begin classes for young women, eight turned up for the first les-son; and five years later it was estimated that there were 60,000 female typists in the USA. Sholes said, "I feel that I have done something for the women who have always had to work so hard. This will more easily enable them to earn a living."
    Sholes continued his work on the typewriter, giving Remingtons the benefit of his results. His last patent was granted in 1878. Never very strong, Sholes became consumptive and spent much of his remaining nine years in the vain pursuit of health.
    [br]
    Bibliography
    23 June 1868, US patent no. 79,265 (the first typewriter patent).
    Further Reading
    M.H.Adler, 1973, The Writing Machine, London: Allen \& Unwin.
    LRD

    Biographical history of technology > Sholes, Christopher Latham

  • 17 Carlson, Chester Floyd

    [br]
    b. 8 July 1906 Seattle, Washington, USA
    d. 19 September 1968 New York, USA
    [br]
    [br]
    Carlson studied physics at the California Institute of Technology and in 1930 he took a research position at Bell Telephone Laboratories, but soon transferred to their patent department. To equip himself in this field, Carlson studied law, and in 1934 he became a patent attorney at P.R.Mallory \& Co., makers of electrical apparatus. He was struck by the difficulty in obtaining copies of documents and drawings; indeed, while still at school, he had encountered printing problems in trying to produce a newsletter for amateur chemists. He began experimenting with various light-sensitive substances, and by 1937 he had conceived the basic principles of xerography ("dry writing"), using the property of certain substances of losing an electrostatic charge when light impinges on them. His work for Mallory brought him into contact with the Battelle Memorial Institute, the world's largest non-profit research organization; their subsidiary, set up to develop promising ideas, took up Carlson's invention. Carlson received his first US patent for the process in 1940, with two more in 1942, and he assigned to Battelle exclusive patent rights in return for a share of any future proceeds. It was at Battelle that selenium was substituted as the light-sensitive material.
    In 1946 the Haloid Company of Rochester, manufacturers of photographic materials and photocopying equipment, heard of the Xerox copier and, seeing it as a possible addition to their products, took out a licence to develop it commercially. The first Xerox Copier was tested during 1949 and put on the market the following year. The process soon began to displace older methods, such as Photostat, but its full impact on the public came in 1959 with the advent of the Xerox 914 Copier. It is fair to apply the overworked word "revolution" to the change in copying methods initiated by Carlson. He became a multimillionaire from his royalties and stock holding, and in his last years he was able to indulge in philanthropic activities.
    [br]
    Further Reading
    Obituary, 1968, New York Times, 20 September.
    R.M.Schaffert, 1954, "Developments in xerography", Penrose Annual.
    J.Jewkes, 1969, The Sources of Invention, 2nd edn, London: Macmillan, pp. 405–8.
    LRD

    Biographical history of technology > Carlson, Chester Floyd

  • 18 Cotton, William

    SUBJECT AREA: Textiles
    [br]
    b. 1819 Seagrave, Leicestershire, England
    d. after 1878
    [br]
    English inventor of a power-driven flat-bed knitting machine.
    [br]
    Cotton was originally employed in Loughborough and became one of the first specialized hosiery-machine builders. After the introduction of the latch needle by Matthew Townsend in 1856, knitting frames developed rapidly. The circular frame was easier to work automatically, but attempts to apply power to the flat frame, which could produce fully fashioned work, culminated in 1863 with William Cotton's machine. In that year he invented a machine that could make a dozen or more stockings or hose simultaneously and knit fashioned garments of all kinds. The difficulty was to reduce automatically the number of stitches in the courses where the hose or garment narrowed to give it shape. Cotton had early opportunities to apply himself to the improvement of hosiery machines while employed in the patent shop of Cartwright \& Warner of Loughborough, where some of the first rotaries were made. He remained with the firm for twenty years, during which time sixty or seventy of these machines were turned out. Cotton then established a factory for the manufacture of warp fabrics, and it was here that he began to work on his ideas. He had no knowledge of the principles of engineering or drawing, so his method of making sketches and then getting his ideas roughed out involved much useless labour. After twelve years, in 1863, a patent was issued for the machine that became the basis of the Cotton's Patent type. This was a flat frame driven by rotary mechanism and remarkable for its adaptability. At first he built his machine upright, like a cottage piano, but after much thought and experimentation he conceived the idea of turning the upper part down flat so that the needles were in a vertical position instead of being horizontal, and the work was carried off horizontally instead of vertically. His first machine produced four identical pieces simultaneously, but this number was soon increased. Cotton was induced by the success of his invention to begin machine building as a separate business and thus established one of the first of a class of engineering firms that sprung up as an adjunct to the new hosiery manufacture. He employed only a dozen men and turned out six machines in the first year, entering into an agreement with Hine \& Mundella for their exclusive use. This was later extended to the firm of I. \& R.Morley. In 1878, Cotton began to build on his own account, and the business steadily increased until it employed some 200 workers and had an output of 100 machines a year.
    [br]
    Bibliography
    1863, British patent no. 1,901 (flat-frame knitting machine).
    Further Reading
    F.A.Wells, 1935, The British Hosiery and Knitwear Industry: Its History and Organisation, London (based on an article in the Knitters' Circular (Feb. 1898).
    A brief account of the background to Cotton's invention can be found in T.K.Derry and T.I. Williams, 1960, A Short History of Technology from the Earliest Times to AD 1900, Oxford; C. Singer (ed.), 1958, A History of Technology, Vol. V, Oxford: Clarendon Press.
    F.Moy Thomas, 1900, I. \& R.Morley. A Record of a Hundred Years, London (mentions cotton's first machines).
    RLH

    Biographical history of technology > Cotton, William

  • 19 Gray, Elisha

    SUBJECT AREA: Telecommunications
    [br]
    b. 2 August 1835 Barnesville, Ohio, USA
    d. 21 January 1901 Newtonville, Massachusetts, USA
    [br]
    American inventor who was only just beaten by Alexander Graham Bell in the race for the first telephone patent.
    [br]
    Initially apprenticed to a carpenter, Gray soon showed an interest in chemistry, but he eventually studied electrical engineering at Oberlin College, Oberlin, Ohio, in the late 1850s. In 1869 he founded the Western Electric Manufacturing Company, where he devised an electric-needle annunciator for use in hotels and lifts and carried out experimental work aimed at the development of a means of distant-speech communication. After successful realization of a liquid-based microphone and public demonstrations of a receiver using a metal diaphragm, on 14 February 1876 he deposited a caveat of intention to file a patent claim within three months for the invention of the telephone, only to learn that Alexander Graham Bell had filed a full patent claim only three hours earlier on the same day. Following litigation, the patent was eventually awarded to Bell. In 1880 Gray was appointed Professor of Dynamic Electricity at Oberlin College, but he appears to have retained his business interests since in 1891 he was both a member of the firm of Gray and Barton and electrician to his old firm, Western Electric. Subsequently, in 1895, he invented the TelAutograph, a form of remote-writing telegraph, or facsimile, capable of operating over short distances. The system used a transmitter in which the x and y movements of a writing stylus were coupled to a pair of variable resistors. In turn, these were connected by two telegraph wires to a pair of receiving coils, which were used to control the position of a pen on a sheet of paper, thus replicating the movement of the original stylus.
    [br]
    Bibliography
    1878, Experimental Research in Electro-Harmonic Telegraph and Telephony, 1867–76.
    Further Reading
    J.Munro, 1891, Heroes of the Telegraph.
    D.A.Hounshill, 1975, "Elisha Gray and the telephone. On the disadvantage of being an expert", Technology and Culture 16:133.
    —1976, "Bell and Gray. Contrast in style, politics and etiquette", Proceedings of the Institute of Electrical and Electronics Engineers 64:1,305.
    International Telecommunications Union, 1965, From Semaphore to Satellite, Geneva.
    KF

    Biographical history of technology > Gray, Elisha

  • 20 Smith, Sir Francis Pettit

    SUBJECT AREA: Ports and shipping
    [br]
    b. 9 February 1808 Copperhurst Farm, near Hythe, Kent, England
    d. 12 February 1874 South Kensington, London, England
    [br]
    English inventor of the screw propeller.
    [br]
    Smith was the only son of Charles Smith, Postmaster at Hythe, and his wife Sarah (née Pettit). After education at a private school in Ashford, Kent, he took to farming, first on Romney Marsh, then at Hendon, Middlesex. As a boy, he showed much skill in the construction of model boats, especially in devising their means of propulsion. He maintained this interest into adult life and in 1835 he made a model propelled by a screw driven by a spring. This worked so well that he became convinced that the screw propeller offered a better method of propulsion than the paddle wheels that were then in general use. This notion so fired his enthusiasm that he virtually gave up farming to devote himself to perfecting his invention. The following year he produced a better model, which he successfully demonstrated to friends on his farm at Hendon and afterwards to the public at the Adelaide Gallery in London. On 31 May 1836 Smith was granted a patent for the propulsion of vessels by means of a screw.
    The idea of screw propulsion was not new, however, for it had been mooted as early as the seventeenth century and since then several proposals had been advanced, but without successful practical application. Indeed, simultaneously but quite independently of Smith, the Swedish engineer John Ericsson had invented the ship's propeller and obtained a patent on 13 July 1836, just weeks after Smith. But Smith was completely unaware of this and pursued his own device in the belief that he was the sole inventor.
    With some financial and technical backing, Smith was able to construct a 10 ton boat driven by a screw and powered by a steam engine of about 6 hp (4.5 kW). After showing it off to the public, Smith tried it out at sea, from Ramsgate round to Dover and Hythe, returning in stormy weather. The screw performed well in both calm and rough water. The engineering world seemed opposed to the new method of propulsion, but the Admiralty gave cautious encouragement in 1839 by ordering that the 237 ton Archimedes be equipped with a screw. It showed itself superior to the Vulcan, one of the fastest paddle-driven ships in the Navy. The ship was put through its paces in several ports, including Bristol, where Isambard Kingdom Brunel was constructing his Great Britain, the first large iron ocean-going vessel. Brunel was so impressed that he adapted his ship for screw propulsion.
    Meanwhile, in spite of favourable reports, the Admiralty were dragging their feet and ordered further trials, fitting Smith's four-bladed propeller to the Rattler, then under construction and completed in 1844. The trials were a complete success and propelled their lordships of the Admiralty to a decision to equip twenty ships with screw propulsion, under Smith's supervision.
    At last the superiority of screw propulsion was generally accepted and virtually universally adopted. Yet Smith gained little financial reward for his invention and in 1850 he retired to Guernsey to resume his farming life. In 1860 financial pressures compelled him to accept the position of Curator of Patent Models at the Patent Museum in South Kensington, London, a post he held until his death. Belated recognition by the Government, then headed by Lord Palmerston, came in 1855 with the grant of an annual pension of £200. Two years later Smith received unofficial recognition when he was presented with a national testimonial, consisting of a service of plate and nearly £3,000 in cash subscribed largely by the shipbuilding and engineering community. Finally, in 1871 Smith was honoured with a knighthood.
    [br]
    Principal Honours and Distinctions
    Knighted 1871.
    Further Reading
    Obituary, 1874, Illustrated London News (7 February).
    1856, On the Invention and Progress of the Screw Propeller, London (provides biographical details).
    Smith and his invention are referred to in papers in Transactions of the Newcomen Society, 14 (1934): 9; 19 (1939): 145–8, 155–7, 161–4, 237–9.
    LRD

    Biographical history of technology > Smith, Sir Francis Pettit

См. также в других словарях:

  • patent troll — (PAT.unt trohl) n. A company that purchases a patent, often from a bankrupt firm, and then sues another company by claiming that one of its products infringes on the purchased patent.. adj. patent trolling pp. Example Citations: These patent… …   New words

  • Patent troll — is a pejorative but questioned term used for a person or company who is a non practicing inventor, and buys and enforces patents against one or more alleged infringers in a manner considered by the target or observers as unduly aggressive or… …   Wikipedia

  • Patent slip — Patent Slipway at Arbroath Harbour Steps involved in s …   Wikipedia

  • Patent drawing — Patent law (patents for inventions) …   Wikipedia

  • Patent Reform Act of 2007 — The Patent Reform Act of 2007 (USBill|110|H.R.|1908, USBill|110|S.|1145) is a proposal introduced in the 110th United States Congress for changes in United States patent law. Democratic Congressman Howard Berman introduced the House of… …   Wikipedia

  • Patent Act (Canada) — The Patent Act is the Canadian Act of Parliament that governs the patent law in Canada. It states what can be patented and how patents are to be obtained. The Patent Act also governs the Patent Office and limits the power and responsibility of… …   Wikipedia

  • Patent engineer — A patent engineer or patent scientist is a patent law professional that is typically involved in preparing and prosecuting patent applications. The terms are usually applied to patent professionals with scientific or engineering backgrounds that… …   Wikipedia

  • Patent portfolio — A patent portfolio is a collection of patents owned by a single entity, such as an individual or corporation. The patents may be related or unrelated. Patent applications may also be regarded as included in a patent portfolio. The monetary… …   Wikipedia

  • Patent Law Reform Act — Der britische Patent Law Reform Act vom 1. Oktober 1852 setzte das erste moderne Patentrecht im Mutterland der industriellen Revolution ein. Das Gesetz löste das im Wesentlichen auf dem Clerks Act von 1536 basierende alte Patentrecht ab. Vor… …   Deutsch Wikipedia

  • Patent of precedence — A patent of precedence is a grant to an individual by letters patent of a higher social or professional position than the precedence to which his ordinary rank entitles him.Historical user in the English legal professionThe principal instance in… …   Wikipedia

  • patent base — noun or patent block : a base usually of metal and often in standard interchangeable units to which low mounted or unmounted letterpress plates are secured in position for printing …   Useful english dictionary

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»